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We are looking for a way of combining experimentally determined probabilities 
that should yield maximum predictive power. This concept is defined as permit- 
ting calculation of the accuracy of future experimental results solely on the basis 
of the number of runs whose data will serve as input for making the prediction. 
Each probability is transformed to an associated variable whose uncertainty 
interval depends only on the amount of data and strictly decreases with it. We 
find that for a probability which is a function of two other probabilities 
maximum predictive power is achieved when linearly summing their associated 
variables and transforming back to a probability. This recovers the quantum 
mechanical superposition principle. 

1. INTRODUCTION 

Quantum theory is as yet not understood to the same degree as are, 
for instance, classical mechanics or special relativity. Classical mechanics 
coincides well with our intuition and is therefore rarely questioned. Special 
relativity runs counter to our immediate insight, but can easily be derived 
by assuming constancy of the speed of light for every observer. And the 
assumption of a frame-independent maximal velocity may be made plausi- 
ble by epistemological arguments (Whitrow, 1984). Quantum theory, on 
the other hand, demands that we accept two premises. First, it wants us to 
give up determinism for the sake of a probabilistic view. This, in fact, 
might be acceptable in a fundamental theory of prediction, because any 
communicable observation can be decomposed into a finite number of bits, 
and hence predictions are limited to finite accuracy. More disturbing is the 
second premise: Quantum theory wants us to give up the sum rule of 
probabilities by requiring interference instead. However, this sum rule is 

ZAtominstitut der 0esterreichischen Universiffiten, A-1020, Vienna, Austria. 

171 
0020-7748/94/0100.017|$07,00]0 �9 1994 Plenum Publishing Corporation 



172 Summhammer 

deeply ingrained in our thought, not so much because it works in everyday 
life, but because of its roots in counting and the definition of sets: Define 
sets with no commonelements, then define the set which joins them all. The 
number of elements in this latter set is just the sum of the elements of the 
individual sets. When deriving the notion of probability from the relative 
frequency of events we are thus immediately led to the sum rule, such that 
any other rule appears inconceivable. And this may be the reason why we 
have difficulties accepting the quantum-theoretic rule, where probabilities 
are summed by calculating the square of the sum of the complex square 
roots of  the probabilities. In this situation two views are possible. We may 
either consider the quantum-theoretic rule as a pecularity of nature. Or, we 
may conjecture that the quantum-theoretic rule has something to do with 
how we organize data from observations into quantities that are physically 
meaningful to us. We want to adopt the latter position. Therefore we seek 
to establish a grasp of  the quantum-theoretic rule with the general idea in 
mind that, given the probabilistic paradigm, there may exist an optimal 
strategy of  prediction, quite independent of traditional physical concepts, 
but resting on what one can deduce from a given amount of information. 
We will formulate elements of  such a strategy with the aim of  achieving 
maximum predictive power. 

2. R E P R E S E N T A T I O N  OF K N O W L E D G E  F R O M  
PROBABILISTIC DATA 

Any investigative endeavor rests upon one natural assumption: More 
data from observations will lead to better knowledge of the situation at 
hand. Let us see whether this holds in quantum experiments. The data are 
relative frequencies of events. From these we deduce probabilities from 
which in turn we derive the magnitude of physical quantities. As an example 
take an experiment with two detectors, where a click is registered in either 
the one or the other. (We exclude simultaneous clicks for the moment.) Here, 
only one probability is measurable, e.g., the probability p~ of  a click in 
detector 1. After N runs we have n~ counts in detector 1 and n2 counts in 
detector 2, with n~ + n2 = N. The probability p~ can thus be estimated as 

nl (1) 
P~ N 

with the uncertainty interval 2 

T . . . .  ( 2 )  

2The uncertainty interval is derived from Chebyshev's inequality; see, e.g., Feller (1968, p. 233). 
For reasons of simplicity we are using only the approximate form valid for large N. 
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From Pl the physical quantity X, which we are actually interested in, is 
derived by 

Z = Z(P~) (3) 

dZ 

The accuracy is given by the inverse of the uncertainty interval AX. With 
the above assumption we expect it to increase with each additional run, 
because we get additional data. Therefore, for any N, we expect 

Az(N + 1) < Ax(N) (5) 

However, this inequality cannot be true for an arbitrary functional relation 
X(Pl). In general AX will fluctuate and only decrease on the average with 
increasing N. To see this take a theory A which relates physical quantity 
and probability by Xa =P~. In an experiment of N = 100 runs and nl = 90 
we get AXa(100)= .030. By taking into account the data from one addi- 
tional run, where detector 2 happened to click, we have AXe(101 ) = .031. 
The difference may appear marginal, but nevertheless the accuracy of our 
estimate for XA has decreased although we incorporated additional data. So 
our original assumption does not hold. This is worrisome, as it implies that 
a prediction based on a measurement of Xa may be more accurate if the 
data of the last run are not included. Let us contrast this to theory B, 
which connects physical quantity and probability by Zs =p6. With N 
and nl as before we have AXs(100) = .106. Incorporation of the data from 
the additional run leads to AZB(101)= .104. Now we obviously do not 
question the value of the last run, as the accuracy of our estimate has 
increased. 

The lesson to be learnt from the two examples is that the specific 
functional dependence of a physical quantity on the probability (or several 
probabilities if it is derived from a variety of experiments) determines 
whether our knowledge about the physical quantity will increase with 
additional experimental data, and that this also applies to the accuracy of 
our predictions. This raises the question of what quantities we should be 
interested in to make sure that we get to know them more accurately by 
doing more experiments. From a statistical point of view the answer is 
straightforward: choose variables whose uncertainty interval strictly de- 
creases, and simply define them as physical. And from a physical point of 
view? Coming from classical physics we may have a problem, as concepts 
like mass, distance, angular momentum, energy, etc., are suggested as 
candidates of physical quantities. But when coming from the phenomenol- 
ogy of quantum physics, where all we ever get from nature is random clicks 
and count rates, a definition of physical quantities according to statistical 
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criteria may seem more reasonable, simply because there is no other 
guideline as to which random variables should be considered physical. 

Pursuing this line of thought, we want to express experimental results 
by random variables whose uncertainty interval strictly decreases with 
more data. When using them in predictions, which are also expressed by 
variables with this property, predictions should automatically become more 
accurate with more data input. Now a few trials will show that there are 
many functions X(Pl) whose uncertainty interval decreases with increasing 
N [equation 4]. We want to choose the one with maximum predictive 
power. The meaning of this term becomes clear when realizing that in 
general AZ depends on N and on nl (via Pl). These two numbers have a 
very different status. The number of runs N is controlled by the experi- 
menter, while the number of clicks nl is solely due to nature. Maxi- 
mum predictive power then means to eliminate nature's influence on AX. 
For then we can know A~( even before having done any experimental 
runs, simply upon deciding how many we will do. From equation (4) we 
thus get 

I~Z [Pl x//N AZ = ~ (1 --pl)] 1/2 = const (6) 

which results in 

Z = C arcsin(2pl - 1) + D (7) 

where C and D are real constants. The inverse is 

l[ 
p ~ = ~  l + s i n  (8) 

showing that the probability is periodic in X. Aside from the linear 
transformations provided by C and D, any other smooth functions ~(X) in 
real or complex spaces will also fulfill requirement (6) when equally sized 
intervals in Z correspond to equal line lengths along the curve ~t(Z). One 
particular curve is 

at(Z) = sin(2 ) e 'x/2 (9) 

which is a circle in the complex plane with center at i/2. It exhibits the 
property 

p ,  = = ( 1 0 )  

known from quantum theory. But note that, for instance, the func- 
tion fl = sin(x/2) does not fulfill the requirement that the accuracy only 
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depend on iV. Therefore the complex phase factor in equation (9) is 
necessary? 

3. DISTINGUISHABILITY 

We have now found a unique transformation from a probability to 
another class of  variables exemplified by Z in equation (7). These unique 
variables always become better known with additional data. But can they 
be considered physical? We should first clarify what a physical variable is. 
A physical variable can assume different numerical values, where each 
value should not only imply a different physical situation, but should most 
of  all lead to a different measurement result in a properly designed 
experiment. Within the probabilistic paradigm two measurement results are 
different when their uncertainty intervals do not overlap. This can be used 
to define a variable which counts the principally distinguishable results of 
the measurement of a probability. Comparison of  that variable to our 
quantity X should tell us how much Z must change from a given value 
before this can be noticed in an experiment. Following Wootters (1981) 
and Wheeler (1982), the variable 0 counting the statistically distinguishable 
results at detector 1 in N runs of  our above example is given by 

O(nO = Ap(p) - x / ~  arcsin(2pl - l) + ~ p~ = n ~/N 

where Ap is defined as in equation (2). When dividing 0 by N m it becomes 
identical to X when in equation (7) we set C = 1 and D =~/2 .  This 
illuminates the meaning of )~: It is a continuous variable associated with a 
probability, with the particular property that anywhere in its domain an 
interval of fixed width corresponds to an equal number of  measurement 
results distinguishable in a given number of  runs. With Occam's dictum of  
not introducing more entities than are necessary for the description of  the 
subject matter under investigation, X would be the choice for representing 
physical situations and can rightly be called physical. 

4. A SIMPLE PREDICTION: THE SUPERPOSITION PRINCIPLE 

Now we return to our aim of  finding a strategy for maximum 
predictive power. We want to see whether the unique class of variables 
represented by X indicates a way beyond representing data and perhaps 
affords special predictions. For the sake of  concreteness we think of  the 

3More details and variables that can be used to represent several probabilities can be found 
in Summhammer (1988). The statistical properties of Z are analyzed in Summhammer (1989). 
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double-slit experiment. A particle can reach the detector by two different 
routes. We measure the probability that it hits the detector via the left 
route PL by blocking the right slit. In L runs we get nz. counts. In the 
measurement of the probability with only the right path available, PR, we 
get nR counts in R runs. From these data we want to make a prediction 
about the probability Ptot when both paths are open. Therefore we make 
the hypothesis that Ptot is a function of PR and PL. What  can we say about 
the function Ptot(PL, PR) when we demand maximum predictive power from 
it? This question is answered by reformulating the problem in terms of  the 
associated variables ZL, XR, and ~tot, which we derive according to equation 
(7) by setting C = 1 and D = 7r/2. The function Xto,(XL, ZR) must be such 
that a prediction for ~tot has an uncertainty interval ~ t o t ,  which only 
depends on the number of  runs L and R and decreases with both of them. 
(We use the symbol 6Ztot to indicate that it is not derived from a 
measurement of Ptot, but from other measurements from which we want to 
predict Ptot.) In this way we can predict the accuracy of Xtot by only 
deciding the number of runs L and R. No actual measurements need to 
have been done. Because of  

(12) 

maximum predictive power is achieved when 

I 0~tot = const (13) 

and 

O~tot I ] = const (14) 
aXR 

I 

We want to have a real function ~tot(d~L, ~R),  and therefore we get 

~tot = aZL -I- bZR + e (15) 

where a, b, and c are real constants. Furthermore, we must have c = 0 and 
the magnitude of both a and b equal to 1 when we wish to have ~tot 
equivalent to ZR or to Xz when either the one or the other path is blocked. 
So there is an ambiguity of  sign with a and b. When rewriting this in terms 
of  the probability we get 

This does not look like the sum rule of probability theory.. Only for 
PL + PR = 1 does it coincide with it. We may therefore conclude that the 
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sum rule of  probability theory does not afford maximum predictive power. 
But neither does equation (16) look like the quantum mechanical superpo- 
sition principle. However, this should not be surprising, because our input 
was just two real-valued numbers ZL and ZR from which we demanded to 
derive another real-valued number. A general phase as is provided in 
quantum theory could thus not be incorporated. But let us see what we get 
with complex representatives of the associated variables of probabilities. 
We take a(X) from equation (9). Again we define in an equivalent manner 
�9 L, ~R, and ~tot. From PL we have, for instance [from (9) and (8) with 
C = 1 and D = ~r/2] 

_ ,,i/2r_ ~:2 + i( 1 - p L )  I/z] (17) 

and 

O=L ] 1 
ApL=2./Z (18) 

If we postulate a relationship ~tot(~L, ~R) according to maximum predictive 
power, we expect the predicted uncertainty interval 6~ot to be independent 
of ~L and ~R and to decrease with increasing number of runs L and R. 
Analogous to (13) and (14), we must have 

and 

yielding 

1 O=tot ] = const (19) 
0~L 

I Ogtot ] = const (20) 

%ot = S~L + t %  + U (21) 
where s, t, and u are complex constants. Now u must vanish and s and t 
must both be unimodular when/)tot is to be equivalent to either pL or PR 
when the one or the other route is blocked. We then obtain 

/)tot = [=tot[ 2 = lS~L + t~, [2 =PL +PR + 2(pLP~) '/~ cos ~b (22) 

where q~ is an arbitrary phase factor containing the phases of s and t. This 
is exactly the quantum mechanical superposition principle. What is striking 
is that with a theory of maximum predictive power we can obtain the 
general form of this principle, but cannot at all predict Ptot even when we 
have measured PL and PR, because of  the unknown phase ~b. So there is 
room for physical laws. 
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5. CONCLUSION 

We have tried to obtain insight into the quantum mechanical superpo- 
sition principle and set out with the idea that it might follow from a most 
natural assumption of  experimental science: that more data should on the 
one hand provide a more accurate representation of  the matter under 
investigation and on the other hand afford more accurate predictions. 
From this we defined the concept of  maximum predictive power. In essence 
this concept demands laws to be such that the uncertainty of  a prediction 
is solely dependent on the number of  experiments on which the prediction 
is based, and not on the specific outcomes of  these experiments. Applying 
this to the observation of  two probabilities and to possible predictions 
about a third probability therefrom, we arrived at a general form 
combining the probabilities. This turned out to be the same as the 
superposition principle. Our result may be an indication that the laws of  
nature are such that from more observations more accurate predictions 
must be derivable. 
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